
For a better understanding of Arabic Calligraphy

Nouamane Tazi
CentraleSupélec

nouamane.tazi@student-cs.fr

Asmae Khald
CentraleSupélec

asmae.khald@student-cs.fr

Mustapha Ajeghrir
CentraleSupélec

mustapha.ajeghrir@student-cs.fr

Abstract

In the Arabic heritage and culture, Calligraphy is essen-
tial. It is being used for the decoration of houses, public
places, and mosques. Each calligraphy style is specific to
its author, but there are some shared rules that should be
respected. In this work we are going to explore the possible
methods in style, character, and words recognition. The first
proposed model will infer the calligraphy style, the second
will infer the characters from the input image.

1. Introduction
Arabic calligraphy combines the arts of drawing and

writing, producing a unique form of textual art. The art
originated when Muslims started writing and documenting
the Holy Quran [12]. Since then, Arabic calligraphy has
been expanded and diversified in styles, producing one of
the world’s great art forms [5]. This art also holds much his-
torical information, as Arabic calligraphy is used in much
of Islamic art and architectural design [6]; therefore, such
texts are a very valuable and rich resource for data. There is
therefore a practical need to automate the reading of Arabic
calligraphy. However, little research has been done in this
area, and few resources exist.

1.1. Arabic Language Specification

The machine reading of Arabic presents many interest-
ing challenges . Arabic has 28 main letters, and is written
from right to left. The letters are very sensitive to the use of
discrete marks to distinguish between them. It is common
to have three letters with the same body form, but distin-
guished with dots or marks placed above or under them (for
example,). Arabic letters are also represented by different
forms according to their position in the word: start, middle,
last, or isolated. This is not the case for the vowel letters
(gj,)), which have no start or middle location forms be-
cause they split words apart as they are not connected to

any letters on the LHS (left hand side).
On top of these challenges, the machine reading of Ara-

bic calligraphy has many additional interesting challenges:
the variety of styles, the extra level of cursive forms, the in-
terweaving of letters and words, rotations and intersections,
etc. Figure 1 show the difference between Arabic text types.

Given all these difficulties for the machine reading of
Arabic calligraphy, how is it possible to envisage an AI sys-
tem that could work? The answer is the restricted text types
that use Arabic calligraphy. Arabic calligraphy is not used
to write general Arabic texts, but rather to glorify text from
the Holy Quran. This restriction greatly simplifies the task
and makes it feasible. In Bayesian terms, we know a lot
about the prior distribution of calligraphic texts. Through
extracting from each text phrase, a bag of letters can be
obtained to simplify the indexing of the suggested answer.
By comparing the result of letter spotting with the probable
bag of letters, the correct text for the selected image can be
found.

Figure 1: The difference between Arabic text types in the
writing of one word (al-Arabiya).

2. Arabic Calligraphy Style Recognition

2.1. Previous Work

The first research in this area used Linear Discernment
Analysis (LDA) as a means of feature extraction from these
documents [7]. This research focused on extracting only
three Arabic letters (aleph, lam, ain) and compared K-
nearest neighbour with Naive Bayes classification obtaining

1

excellent results. Back-propagation neural network classi-
fication was used in [8] to identify the font type of Ara-
bic calligraphy. This study applied image binarisation with
edge direction matrices for future extraction, and obtained
43.7% recognition accuracy. The novel approach of Tri-
angle Model feature extraction was used in [6]. Distance-
based methods were then used to compare images. Apply-
ing Multi-Layer Perceptron and Random Forests as classi-
fiers, respectively gave average accuracy of 50% and 65%.

The previous researches were focused on analysing and
classifying the different types of AC styles. From the classi-
fication of these styles, a proposed new feature to enable the
extraction of text from decoration was explored (Bataineh,
Abdullah and Omar, 2011; Azmi and Omar, 2013). Other
research has applied the object recognition feature in order
to recognise font styles from images (Talab, Abdullah and
Razalan, 2013), or has used text descriptors to extract fea-
tures from AC images (Kaoudja, Kherfi and Khaldi, 2019).
This research has used standard machine learning methods
in classifying AC styles, with different supervised methods
(Bataineh, Abdullah and Omar, 2011; Talab, Abdullah and
Razalan, 2013; Kaoudja, Kherfi and Khaldi, 2019) being
compared with the unsupervised learning model in Azmi
and Omar (2013). Table 2-4 summarises the previously
used Arabic calligraphy classifiers in comparison with the
machine learning methods that have been used. The ta-
ble also records for each paper the size of the dataset used,
the number of calligraphy styles included, and the average
recognition rate recorded for each classifier. The average
classification for the styles included is above 90%; this re-
flects the types of scripts used and the number of training
sets for each style.

Figure 2: Summary of Arabic calligraphy classifiers

2.2. Implementation

Our implementation is highly inspired from [3] and the
data (synthetic and real) from [2]. The main problem
in ACSR (Arabic Calligraphy Style Recognition) is the
scarcity of data. Hopefully, it is possible to generate data
using digital fonts to help the training.

2.2.1 Problem Definition

To use already available data, we only focus on 2 style
classes : Ruqaa and Farsi. We plot the a sample of the real
images in the figure 3. The goal is the distinguish between
the 2 writting styles.1

Figure 3: The 2 classes Ruqaa and Farsi from real images

2.2.2 Data generation

It is not enough to simply use the basic synthesized data
without further processing, the figure 4 shows some differ-
ences between basic synthesized images and real images. It
is important to note : real images are taken from books.

Figure 4: Basic synthesized images against real images

Image generation is done in 4 steps as explained in the
figure 5. First, a random background is chosen. Secondly
a random word is positioned randomly in the canvas with a
random opacity and size. Thirdly, other words a being cho-
sen randomly to represent the paper transparency. Finally,
Gaussian and JPEG noise are being introduced.

Using this strategy, 40′000 images have been generated
against 516 real images.

1Source code: https://github.com/Mustapha-AJEGHRIR/
arabic_calligraphy

2

https://github.com/Mustapha-AJEGHRIR/arabic_calligraphy
https://github.com/Mustapha-AJEGHRIR/arabic_calligraphy

Figure 5: The steps to generate synthetic images

2.2.3 Training strategy and Results

The final used model is in the figure 6. It is mainly com-
posed of Convolutions and Dense layers. The used split
is shown in the figure 7. It is important to notice how small
the amount of real data is used during the final training (Test
mode). This doesn’t prevent the model to reach very good
results.

Mode Accuracy

Validation mode 0.99
Test mode 0.97

2.3. Saliency maps

Plotting Saliency maps helps us interpret what the model
and understands and how inference was made. The figure 8
plots saliency maps for 6 input images in gray (model input
is in gray). We notice that the focus is not made over all the
scriptures present in the image, but only over some special
curves and letters, this means the model is successfully fo-
cusing on the differences between the two classes. In the

case where the model focuses on meaningless parts of the
image, it should be important to review data biases.

2.4. Demo

A live demo is present in the following Hugging-
Face spaces : https://huggingface.co/spaces/
mustapha/ACSR

3. Arabic Calligraphy OCR
3.1. Previous Work

Because of extensive usage of the internet, which pro-
vides various media to be analysed, translated or learned,
digitisation of different types of information is a significant
concern for each culture in order to save itself from being
lost and forgotten. A prominent example is the recent Ithaca
model by Deepmind [1], the first Deep Neural Network for
the textual restoration, geographical and chronological attri-
bution of ancient Greek inscriptions. Reading text from his-
torical images is more challenging than from regular images
(Panichkriangkrai et al., 2017). The process of detecting
text from source images is well known (text recognition).
It has been widely researched and investigated for different
languages and various types of text, whether handwritten,
machine-printed or in styles of calligraphic art (Bhowmik
et al., 2018). The calligraphy domain is more challeng-
ing than the other types of text. In comparing the amount
of research and number of achievements, calligraphy has
seen fewer developments and is not explored as extensively.
This results from the challenges in dealing with the differ-
ent format of the original text as shapes more than letters
and words (Nagy, 2017; Panichkriangkrai et al., 2017). Im-
pressive results have been achieved in reading and handling
Chinese calligraphic scripts or styles (Jiulong et al., 2017).
This is due to the similarity of the letters in this language
to calligraphic and drawn scripts. The symbolic style of
each character in Chinese is constant; they are not shapes
that change according to the position in the word like Ara-
bic letters. Text recognition in different languages (English,
French, Chinese and Korean) has been summarised by Ye
and Doermann (2015).

In Arabic language recognition, an average accuracy of
more than 90% was achieved in correctly digitising hand-
writing from images (Rabi, Amrouch and Mahani, 2017).
Calligraphy is more complicated than handwritten text, and
the same approach and strategies for original Arabic text
cannot be applied. The additional intersecting letters and
the various cursive and rotational styles in the calligraphy
domain require a particular type of segmentation and appli-
cation of additional methods to handle the different issues
of text disordering and to enable potential reading (Azmi et
al., 2011). Furthermore, Saberi et al. (2016) defined and
explored the ability to read AC decorative arts in the Sul-

3

https://huggingface.co/spaces/mustapha/ACSR
https://huggingface.co/spaces/mustapha/ACSR

Figure 6: The Final CNN model used during final tests

Figure 7: The split strategy

tan Alauddin Masjid, with 409 Arabic reading participants,
ranging from 17 to 87 years old. The results show that the
participants barely understood the meaning of the inscrip-
tion, since it was presented as a transformed version of the
original Quran quotation with totally different features.

Figure 9 shows an example of the drawing of the Holy
Quran’s Surah Al-Nas in the Thuluth style by the callig-
rapher, Hasan Kan’an (bin Talal, 2012). This calligraphy
shows the challenges with calligraphic text, with different
sizes, and differences in the direction and order of reading
of the text all found in the same piece of art. The order of
reading moves from right to left but starts from the bottom
sentence, which declares the name of the Surah, then moves
to the central text inside the circular shape, which is the be-
ginning of the Surah and is then completed by the circular
text in the right to left direction. Additional marks and dia-
critic signs follow and surround the text.

3.1.1 Machine learning approach

Many researchers don’t use deep learning for this task be-
cause of the lake of data. They use SVM models as an al-
ternative, they also use computer vision image descriptors

to extract important features from input images. Let’s see
some of the mainly used descriptors:

• SURF features : Speeded Up Robust Features is
mainly inspired on the SIFT descriptor. It uses patches
of images and calculates the Hessian matrix for each
pixel with gaussian kernel and uses Haar-wavelet re-
sponse (for orientation resilience). The resulting fea-
tures are summed by patch and considered as feature
vector (4 values per patch) with lower dimension than
the SIFT descriptor.

• HOG features : Histogram of Oriented Gradi-
ents, the simple version of this descriptor is a
histogram of the angles of the image’s gradients{
θ = arctan

(
Gy

Gx

)}
, for each angle, we associate

the number of pixels having the same gradient angle.
Other HOG versions use Bins instead of 180 angle or
use the sum of the magnitude of the gradients in the
histogram instead of the count. It possible to visualize
the gradients in the input image as it have been shown
in the figure 10.

3.2. Data Generation

As it has been mentioned before, the literature lacks a
public benchmark for handwritten Arabic calligraphy style
classification. Although researches have used some per-
sonal datasets, these datasets suffer from the smallness, the
homogeneity and the simplicity, which dispose them from
being challenging. Thankfully, Zaid et al. [4] have re-
cently proposed Calliar, which is an online dataset for Ara-
bic calligraphy that contains 2,500 sentences and more than
40,000 strokes. The dataset allows capturing calligraphy in
multiple levels ranging from stroke, character, word to sen-
tence level representation. The granularity level allows for

4

Figure 8: Saliency maps showing important pixels for the
class inference.

using the dataset in multiple tasks like classification on the
character or the word level. In addition to that, we can use
the dataset for calligraphy generation and character recog-
nition. The dataset consists of a wide range of calligraphic
styles like Diwani, Thuluth, Farisi, etc. The different styles
make the dataset unique because of the complexity of draw-
ing letters in each of the styles.

Figure 9: The entire Surah Al-Nas from the Quran; calli-
graphic art in the Thuluth style, by the calligrapher Hasan
Kan’an / Arts College (bin Talal, 2012).

Figure 10: HOG features plotted in the input image

Data visualization and exploration is a necessary tech-
nique to assess the quality of the collected dataset. In Arabic
script writing, letters are written connected together which
causes a variation between a letter in beginning, middle or
at the end. Moreover, various calligraphy styles draw char-
acters differently which might cause a single letter to be
confused with another. This is much more apparent when
we try visualizing individual characters in our datasets. In
Figure 11a, we visualize four different letters sampled ran-
domly from our dataset. For example, the letter �, in the
first row is written in different variations. The first image of
the character is interesting because the character is drawn
upside down. This type of drawing mostly happens in Kufic
calligraphy. The letter Ð is also interesting because it can
be written with or without a loop depending on the style of
calligraphy. The letter ¼is unique because it can appear in

5

either single stroke or double stroke depending in its posi-
tion on a given word. Similarly in Figure 11b, we see the
results of visualizing word level representations. This is im-
portant because this proves that our dataset can be used to
extract word-level features which can be utilized for word
level recognition. The most interesting one is the writing of
the wordñë which can be written in many variations as seen
in the third row. One thing that makes this dataset complex
is the freedom of writing in different angles like in the last
column of the third row where the word is written vertically.

(a) Sample character variations.

(b) Sample word variations.

Figure 11: Different variations of drawing characters and
words.

Since the focus of our initial study is to see how well
can recent OCR models detect arabic calligraphy, we start
by extracting the characters drawings of each calligraphic
sample from the Calliar dataset. We also crop the images to
have square shapes of minimum 600px×600px. A preview
of the extracted images are shown in the Figure 13

3.3. Approach

The basis for this part of our research is TrOCR (Li et al.,
2021), which combines the BERT-style vision transformer
BEiT (Bao et al., 2021) with a RoBERTa (Liu et al., 2019)
language representation model. BEiT works as an encoder
and is pre-trained on the Image-Net-1K (Russakovsky et

al., 2015) dataset containing 1.2M images, while RoBERTa
serves as a decoder producing the text. Li et al. (2021) used
687M of printed and about 18M of synthetically generated
handwritten text lines in English to pre-train the TrOCR
model. During this phase, the model learns to extract rele-
vant features from the images and decode them into English
text, therefore training the language model from scratch. Li
et al. (2021) fine-tuned their pretrained TrOCR instances on
”real-world” data, like the IAM dataset (Marti and Bunke,
2002). The IAM dataset consists of handwritten English
lines from different authors.

Our research aims to exploit the pre-trained vision and
language transformers, hoping that a model fine-tuned on
historical manuscripts generalises well enough to be applied
to extensive and variable arabic calligraphy collections. We
want to test whether we can transfer the ”knowledge” about
handwriting in the English language TrOCR has acquired
from the early modern manuscripts. And since the Ara-
bic language differ a lot from the English language, we
chose to warm-start our decoder model with the pretrained
AraBERT, while using ViT for the encoder model. See Fig-
ure 12

Encoder: We chose for our encoder the ViT model,
which applies a pure transformer directly to sequences of
image patches to classify the full image. Recently pro-
posed by Dosovitskiy et al. [13], it has achieved state-of-
the-art performance on multiple image recognition bench-
marks. In addition to image classification, transformer has
been utilized to address a variety of other vision problems,
including object detection [9], [21], semantic segmentation
[19], image processing [10], and video understanding [20].
Thanks to its exceptional performance, more and more re-
searchers are proposing transformer-based models for im-
proving a wide range of visual tasks.

Decoder: The decoder in our vision encoder-decoder is
AraBERT. Which was released by Antoun et al. (2020) and
was among other models compared to mBert. AraBERT
achieved state-of-the-art performance on most tested Ara-
bic NLP tasks. The models were trained on news articles
manually scraped from Arabic news websites and several
publicly available large Arabic corpora. One of the cor-
pora is named OSCAR (Open Super-large Crawled Aggre-
gated Corpus), not to be confused with the image captioning
model OSCAR (Object-Semantics Aligned Pre-training).
In total, the dataset consists of ∼ 77 GB of text. There
are several versions of AraBERT available.

3.4. Experimental Setting

The pretrained weights used for our TrOCR variant
come from aubmindlab/bert-base-arabertv2
and google/vit-base-patch16-224-in21k
from the HuggingFace hub for our encoder and decoder
respectively. We trained the model for 500 epochs with

6

aubmindlab/bert-base-arabertv2
google/vit-base-patch16-224-in21k

Figure 13: Preview of the processed dataset.

a batch size of 8 on a Geforce 3090. We evaluated the
model every 5 steps on an evaluation dataset constituted of
64 samples. And to avoid overfitting on our limited data,
we set an early stopping with a patience of 250 steps. The
training curves are shown in the figures 14

We obtained a surprising character error rate (CER) of
21%, which was unexpected for a pretrained encoder model
that never saw cursive text before, let alone arabic text. To
further investigate what the ViT encoder has learnt we plot
the average attention weights in the last Transformer block

(a) Training loss

(b) Evaluation loss

(c) Evaluation character error rate (CER)

Figure 14: Training curves

in the appendix A.1. We can see that some heads tend to fo-
cus mostly on some specific strokes shapes for some letters,
while some heads focus on wider scopes in the images.

Since, the calligraphic writing for some letters can hardly
be distinguished, we also plot the confusion matrix for the

Figure 12: Proposed TrOCR model.

7

same experiment, see Figure 15. This confirms that the
model has a hard time to distinguish some similar letters
like È , P and @.

Figure 15: Confusion Matrix.

3.5. Results and discussion

3.5.1 Minimal pre-processing of data

During this project, we applied no pre-or post-processing
of the Arabic raw text. This could have a negative effect
on the performance of our models and the final results. In
their Arabic image captioning work, ElJundi et al. (2020)
writes: ”It is crucial to clean and pre-process our data before
feeding it to any model because ’garbage in, garbage out’...”

They followed Arabic pre-processing techniques recom-
mended by Shoukry and Rafea (2012):

1. Remove (harakat) diacritics.

2. Normalize the hamza (Z) on characters (for example to
distinguish between a glottal stop and a mere vowel,
hamza is usually added to letter Alif (@) diacritically,

either above (

@) or below (@

)).

3. Normalize some word ending characters, such as taa
marbouta (�è) and ya’ maqsoura (ø

).

4. Remove punctuation as well as non-Arabic letters.

It is hard to say how this text processing scheme ap-
plied on our work would affect the final scores, but we

think that a pre-processing scheme similar to the one
above could give our models better performance. From
the context of pre-processing point 2 ., our candidate
caption output already seems to be hamza-normalized
(i.e. all {

@ or @

→ @), while reference captions still con-

tains extra hamzas on them. During evaluation, this of
course affects the mean CER scores negatively, since
the similarity function between symbols

@ , @

and @ pro-

duces CER scores more than 0.

Another kind of Arabic text processing is sub-word units
segmentation used in training some of the AraBERT mod-
els released by Antoun et al. (2020). The authors reduce
the model vocabulary by segmenting words into into stems,
prefixes and suffixes. For instance, ” �é 	ªÊË @ Alloga” becomes

”È@ 	
©Ë

�
è”. Since we chose bert-base-arabertv2,

which is trained on non-segmented text, we did not use sub-
word segmentation. Nonetheless, it would be interesting to
see how segmentation applied to the candidate and refer-
ence captions would affect the evaluation scores.

4. Future Work
In addition to the above-mentioned examples, the dataset

could be used for sketch generation as a creative applica-
tion. Most of the research in the literature that deals with
sketch drawing and text-to-image, consider English like
GANwriting [17], Scrabble-GANs [14], DF-GANs [18],
BézierSketch [11], sketchRNN [15] and DoodlerGAN [16].
This field of research is very important because it combines
multiple modalities ranging from natural language process-
ing (NLP) , generative adverserial networks (GANs) and
creative applications. In the literature, there are hundreds
of papers published in each year for each of those fields
but due to the lack of proper datasets, there are no real ad-
vancements in making systems that deal with all of them
especially for Arabic. We believe that this dataset can fill
this gap.

4.1. Bag of letters

The character recognition model could be used not as a
text generator, but as character counter. This will be done by
replacing the decoder by a 2 fully connected layer with an
output of 36 (the possible characters in our vocabulary), the
problem will be formulated a multi dimensional regression
to count the number of the characters in each image. This
bag of letters could be used as TF-IDF vector, a search will
be performed on the main possible verses and texts usually
used in calligraphy to detect the nearest neighbor to the bag
of letters vector. It is also possible to augment the size of
the output layer to predict N-grams, this would be easier for
the model as there are usually some easy to spot words in
the calligraphy.

8

bert-base-arabertv2

4.2. End to End word and sentence recognition

It is possible to use an end to end word 2 or sentence 3

recognition. We have already trained the decoder encoder
model for theses tasks and got the CER error of 0.4 and 0.6
respectively. These results might need additional process-
ing to reduce the error.

The next step would be to use prior knowledge of the
possible words and sentences (Mainly from religious re-
sources) to correct the model output. We have seen that
sometimes the model yields good sentences but with one or
two incorrect words, so it is possible to search for the near-
est known sentence for correction using CER as a distance.
It is also possible to retrain the decoder’s tokenizer to be
specific to words and sentences used in arabic callligraphy.

5. Conclusion
As we previously seen, it is possible to detect the Arabic

calligraphy style using simple CNN networks of about half
a million parameter with high score. However, there are
many limitations in this work, first of them is the lake of
data and low number of the considered classes. The second
application of character recognition promises good results
if it is used with the bag of letters technique or N-grams to
infer the written calligraphy.

References
[1] ithaca. https://ithaca.deepmind.com/.

[2] Mahmoud Aslan arabic font classification.
https://mhmoodlan.github.io/blog/
arabic-font-classification#4-data. Ac-
cessed: 2022-04-10.

[3] Zaid Alyafeai and Maged Al-Shaibani. ARBML: Demo-
critizing Arabic natural language processing tools. In Pro-
ceedings of Second Workshop for NLP Open Source Software
(NLP-OSS), pages 8–13, Online, Nov. 2020. Association for
Computational Linguistics.

[4] Zaid Alyafeai, Maged S Al-shaibani, Mustafa Ghaleb,
and Yousif Ahmed Al-Wajih. Calliar: An online hand-
written dataset for arabic calligraphy. arXiv preprint
arXiv:2106.10745, 2021.

[5] E. Ataer and P. Duygulu. Retrieval of ottoman documents,”
in proceedings of the 8th acm international workshop on
multimedia information retrieval,, 2006.

[6] Mohd Sanusi Azmi, Khairuddin Omar, Mohammad Faidzul
Nasrudin, Azah Kamilah Muda, Azizi Abdullah, and Khadi-
jah Wan Mohd Ghazali. Features extraction of arabic callig-
raphy using extended triangle model for digital jawi paleog-
raphy analysis. Int. J. Comput. Inf. Syst. Ind. Manag. Appl,
5:696–703, 2013.

2https://wandb.ai/nouamanetazi/TrOCR/runs/
17jdaji1?workspace=user-nouamanetazi

3https://wandb.ai/mustapha/TrOCR/runs/10utsitc?
workspace=user-mustapha

[7] Beckman I. Kedem K. et al Bar-Yosef, I. character extrac-
tion, and writer identification of historical hebrew calligra-
phy documents. In character extraction, and writer iden-
tification of historical Hebrew calligraphy documents, vol-
ume 1, pages 89–99, 2007.

[8] Bilal Bataineh, Siti Norul Huda Sheikh Abdullah, and
Khairudin Omar. Arabic calligraphy recognition based on
binarization methods and degraded images. In 2011 Inter-
national Conference on Pattern Analysis and Intelligence
Robotics, volume 1, pages 65–70, 2011.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020.

[10] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021.

[11] Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang,
and Yi-Zhe Song. Béziersketch: A generative model for scal-
able vector sketches. In European Conference on Computer
Vision, pages 632–647. Springer, 2020.

[12] Nachum Dershowitz and Andrey Rosenberg. Arabic charac-
ter recognition.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[14] Sharon Fogel, Hadar Averbuch-Elor, Sarel Cohen, Shai Ma-
zor, and Roee Litman. Scrabblegan: Semi-supervised vary-
ing length handwritten text generation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4324–4333, 2020.

[15] Songwei Ge, Vedanuj Goswami, C Lawrence Zitnick, and
Devi Parikh. Creative sketch generation. arXiv preprint
arXiv:2011.10039, 2020.

[16] Rachid Benslimane Ilahm Chaker and Mostafa Harti. Cre-
ation of al mabsout moroccan fonts format. n 2011 Collo-
quium in Information Science and Technology,, 2011.

[17] Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusiñol, Ali-
cia Fornés, and Mauricio Villegas. Ganwriting: content-
conditioned generation of styled handwritten word images.
In European Conference on Computer Vision, pages 273–
289. Springer, 2020.

[18] Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiao-Yuan
Jing, Fei Wu, and Bingkun Bao. Df-gan: Deep fusion gener-
ative adversarial networks for text-to-image synthesis. arXiv
preprint arXiv:2008.05865, 2020.

[19] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with trans-
formers. In Proceedings of the IEEE/CVF conference on

9

https://ithaca.deepmind.com/
https://mhmoodlan.github.io/blog/arabic-font-classification#4-data
https://mhmoodlan.github.io/blog/arabic-font-classification#4-data
https://wandb.ai/nouamanetazi/TrOCR/runs/17jdaji1?workspace=user-nouamanetazi
https://wandb.ai/nouamanetazi/TrOCR/runs/17jdaji1?workspace=user-nouamanetazi
https://wandb.ai/mustapha/TrOCR/runs/10utsitc?workspace=user-mustapha
https://wandb.ai/mustapha/TrOCR/runs/10utsitc?workspace=user-mustapha

computer vision and pattern recognition, pages 6881–6890,
2021.

[20] Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher,
and Caiming Xiong. End-to-end dense video captioning with
masked transformer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8739–
8748, 2018.

[21] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

A. Appendix

10

Figure A.1: Average attention weights in the 12th Transformer block for multiple inputs.

11

