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1 Introduction
Decision systems inference aims to discover the rules used by a decision maker (DM) based on decision
examples, those rules could be used in the future to make the same decision as the DM. In this paper,
we are going to study two types of decision rules : Majority rule (MR-sort) and non-compensatory
rule (NCS).

1.1 Definition of MR-sort
Mr-sort aims to classify items based on n criteria (N ) over p+1 classes. Lets consider (bh1 , bh2 , . . . , bhn) ∈
Rn h ∈ {1, . . . , p} to be the profiles of class Ch, we are considering the case where classes are
monotone, so being in class Ch mean to be in all the classes equal or lower than h. Lets also consider
{w1, . . . , wn} to be the weights for each criterion with

∑
i∈N wi = 1 and λ ∈ [0.5, 1] a fixed threshold.

Being in a class is defined as :

x ∈ Ch ⇐⇒
∑

i∈N : xi≥bhi

wi ≥ λ

1.2 Definition of NCS
NCS is similar to MR-sort, except there is no Majority or weights. The necessary condition to be in
class Ch is to verify all the clauses linked this class, Those clauses are in the following form :

x ∈ Ch ⇐⇒
∧
i∈N

(xi ≥ bhi )
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3 INV-MR-SORT

2 Our task
The project that have been assigned to us is to invert the MR-sort and NCS judgments, which mean
to infer the decision parameters of a DM from its decisions. For MR-sort, this means to find :

λ

wi ∀i ∈ N
bhi ∀i ∈ N ,∀h ∈ {1 . . . p}

For NCS this means to find :

bhi ∀i ∈ N ,∀h ∈ {1 . . . p}

The input of our problem is only a sample of the DM’s judgments, for each sample we have access
to its values for each criterion and the DM’s decision over it.

3 inv-MR-Sort
As defined previously we have to find the decision parameters. A practical way to do this is by using
Linear programming with Gurobi. All the code we have used and benchmarks done can be found in
our GitHub repository [1].

3.1 Mathematical representation
In order solve this problem mathematically we should add a continuous variable chij for each sample j

and criterion i, this variable should be equal to 1 only and only if xi ≥ bhi for the sample j. In addition
we should also add some slack variables x and y for each sample, the objective function would be a
variable α which aims to maximize all the slack variables of the problem. The resulting linear program
will be1 :

1Lets denote K = {1, 2, . . . , p} and Kno_end = {1, 2, . . . , p− 1} and Kno_no_end = {1, 2, . . . , p− 2}
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3.1 Mathematical representation 3 INV-MR-SORT

Maximize α

subject to
∑
i∈N

chij + xj + ϵ = λ ∀aj ∈ Ch,∀h ∈ Kno_end∑
i∈N

ch−1
ij = λ+ yj ∀aj ∈ Ch,∀h ∈ {2, . . . , k}

α ≤ xj , α ≤ yj ∀aj ∈ C∗

clij ≤ wi ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

clij ≤ δlij ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

clij ≥ δlij − 1 + wi ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

Mδlij + ϵ ≥ gi(aj)− bli ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

M(δlij − 1) ≤ gi(aj)− bli ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end∑
i∈N

wi = 1, λ ∈ [0.5, 1]

wi ∈ [0, 1] ∀i ∈ N

clij ∈ [0, 1], δlij ∈ {0, 1} ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

xj , yj ∈ R ∀aj ∈ C∗

α ∈ R

The main problem with this linear program is it doesn’t take in consideration the possibility of
mistakes from the DM. For example, the decision maker might make a mistake in an item, so instead
of labeling it to class Ch he labels it to be in C ′

h. In order to account for that, it is possible to add
a new binary variable γj for each sample. The goal should be to maximise it, so it should always be
equal to 1 except if there is a problematic sample.
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3.2 Dataset generation and Noise strategy 3 INV-MR-SORT

Maximize
∑

aj∈C∗

γj

subject to
∑
i∈N

chij + ϵ ≤ λ+M(1− γj) ∀aj ∈ Ch,∀h ∈ Kno_end∑
i∈N

ch−1
ij ≥ λ−M(1− γj) ∀aj ∈ Ch,∀h ∈ {2, . . . , k}

clij ≤ wi ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

clij ≤ δlij ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

clij ≥ δlij − 1 + wi ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

Mδlij + ϵ ≥ gi(aj)− bli ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

M(δlij − 1) ≤ gi(aj)− bli ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

bh+1
i ≥ bhi ∀i ∈ N, ∀h ∈ Kno_no_end∑
i∈N

wi = 1, λ ∈ [0.5, 1]

wi ∈ [0, 1] ∀i ∈ N

clij ∈ [0, 1], δlij ∈ {0, 1} ∀i ∈ N, ∀aj ∈ Ch,∀h ∈ K, ∀l ∈ {h, h− 1} ∩Kno_end

xj , yj ∈ R ∀aj ∈ C∗

For more information about the implementation we recommend Learning the Parameters of a
Multiple Criteria Sorting Method Based on a Majority Rule [2], or Learning MR-Sort Models from
Non-Monotone Data [3]

3.2 Dataset generation and Noise strategy
3.2.1 Parameters generation

In the benchmarking part, we generate DM’s decision parameters randomly in the correct structure.
Lambda : λ is generated with a uniform distribution between 0.5 and 1 : U(0.5, 1).
Criteria weights : wi ∀i ∈ N are generated with a uniform distribution U(0, 1) then normalized to
sumup to 1.
Profiles : If we consider [a, b] to be the interval of possible values for our criteria. We generate
bhi ∀h ∈ K, i ∈ N with a uniform distribution U

(
1
6a,

5
6b
)

then we sort them for a fixed i to have the
condition bhi ≤ bh+1

i ∀h ∈ Kno_end, i ∈ N

3.2.2 Sample generation strategy

For each sample we generate a random evaluation for each criterion by following the next steps:

1. We chose a random profile among the available ones

2. We generate a random values for each criterion with a normal dstribution N (0, 2)

3. We assign to our sample the sum of the profile and the random noise
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3.2.3 Noise strategy

In order to test the robustness of our inference, we also created noisy datasets where the class of a
sample is randomly attributed with a probability error_rate :

if random(0, 1) < error_rate : # attribute random class
sample_class = random_int(0, p+1)

else : # attribute normal class
sample_class = MR_sort(sample)

3.2.4 Quantization

When we use the full double precision floats, we get many problems regarding numerical precision in the
solver, we tried to tune many Gurobi parameters like OptimalityTol, FeasibilityTol, IntFeasTol
and Quad. But we found it to be more Time-efficient to work with quantized values, we used the
following function for quantization f(x) = round(x× q)/q for q := quantization_facotr = 106

3.3 Results
3.3.1 Results with no noise

When there is no noise, the α parameter aims to increase all the slack variables, therefore resulting in
very good results as we can see the confusion matrix 1.

Generalisation Predicted Class 0 Predicted Class 1
True Class 0 751 0
True Class 1 0 249

Reconstruction Predicted Class 0 Predicted Class 1
True Class 0 806 1
True Class 1 0 193

Figure 1: Confusion matrix with the default configuration (n = 6, p = 1, ngenerated = 1000). Inference
time : 40s

We have even done some benchmarks to better understand the effect of our parameters as we can
see in the figure 2
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3.3 Results 3 INV-MR-SORT

Figure 2: The MR-sort rules are first being inferred over a training split then tested over a testing
split. The two splits are being generated by the same rules with only 2 classes (p = 1), results are the
mean of 5 random runs. In the right we can see the effect of varying the number of elements in the
training split ngenerated, in the left we can see the effect of varying the number of criteria

Concerning Solving time, we can take a look at the figure 3. We can experimentally remark that
the number of criteria increases the inference time exponentially while the number of samples only
increases it linearly.

Figure 3: Duration of the MR-sort inference over the training split. The split is being generated by
the same rules with only 2 classes (p = 1), results are the mean of 5 random runs. In the right we can
see the effect of varying the number of elements in the training split ngenerated, in the left we can see
the effect of varying the number of criteria

3.3.2 Results with noise

When inferring over a noisy dataset or DM. We don’t use slack variables, we only try to find a
configuration that includes the maximum of samples, therefore the score is not being optimized. We
can see in the confusion matrix 4 how the generalization ability drops with noise. But the reconstruction
rate remains very high at 98% for 20% probability of error (17 real errors in this example).
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4 INV-NCS

Generalisation Predicted Class 0 Predicted Class 1
True Class 0 138 6
True Class 1 0 56

Reconstruction Predicted Class 0 Predicted Class 1
True Class 0 141 3
True Class 1 0 56

Figure 4: Confusion matrix with the default configuration (n = 4, p = 1, ngenerated = 200, N = 0.2),
N refers to the probability of random class attribution, if N = 0.2 this means 20% of the samples will
get random class attribution regardless of the criteria. Inference time : 520s

4 inv-NCS
The Non-Compensatory Sorting model aims at assigning alternatives evaluated on multiple criteria to
one of the predefined ordered categories. It corresponds to a generalization of MR-sort. the inverse
Non-Compensatory Sorting problem,takes as input a set of assignment examples, and computes an NCS
sorting model which is consistent with this preference information. In other words, Inv-NCS learns
the NCS parameters that perfectly match a set of desired outputs. In this work, we are interested in
studying two SAT based representations for learning an NCS model from data, starting by just one
profile and extending then a SAT formulation to multiple classes. After that, we will look for resolving
a maxSAT formulation when the SAT one is unsatisfiable.

4.1 Mathematical representation
4.1.1 SAT formulation

a SAT formulation needs a set of clauses to be defined, thus a set of binary variables, that we defined
as follows:

1. ’ a ’ variables, indexed by a criterion i ∈ N , an exigence level k ∈ [2.p] and a reference value
x ∈ X⋆, represent the approved sets Ak

i , with the following semantic: ai,k,x = 1 ⇔ x ∈ Ak
i i.e.

x is approved at level k according to i

2. ’ t ’ variables, indexed by a coalition of criteria B ⊆ N and an exigence level k ∈ [2.p], represent
the sufficient coalitions T k, with the following semantic: tB,k = 1 ⇔ B ∈ T k i.e. the coalition B
is sufficient at level k

Given an instance of Inv-NCS with an assignment α : X⋆ →
{
C1 ≺ . . . ≺ Cp

}
, the boolean function

ΦC
α with variables ⟨ai,k,x⟩i∈N ,k∈[2.p],x∈X∗ and ⟨tB,k⟩B⊆N ,k∈[2.p], is defined as the conjunction of clauses:

ΦC
α = ϕC1

α ∧ ϕC2
α ∧ ϕC3

α ∧ ϕC4
α ∧ ϕC5

α ∧ ϕC6
α

ϕC1
α =

∧
i∈N ,k∈[2.p]

∧
x′ ix ∈ X∗

ϕC2
α =

∧
i∈N ,k<k′∈[2.p],x∈X∗ (ai,k,X′ ∨ ¬ai,k,X)

ϕC3
α =

∧
B⊂B′ ⊆ N , k ∈ [2.p] (tB′,k ∨ ¬tB,k)

ϕC4
α =

∧
B⊆N ,k<k′∈[2.p] (tB,k ∨ ¬tB,k′)

ϕC5
α =

∧
B⊆N ,k∈[2.p]

∧
x∈α−1(Ck−1)

(∨
i∈B ¬ai,k,x ∨ ¬tB,k

)
ϕC6
α =

∧
B⊆N ,k∈[2.p]

∧
x∈α−1(Ck)

(∨
i∈B ai,k,x ∨ tN\B,k

)
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4.2 Dataset generation and Noise strategy 4 INV-NCS

Meaning of clauses:

• Clauses A1: if student validates a criterion i with evaluation k, then another student with criterion
k’>k validates this criterion surely.

• Clauses A2: if student validates a criterion i with respect to the profile b′h, then he must validate
the criterion i with respect to the profile bh (h < h′).

• Clauses A3: if B is sufficient then each B’ containing B is sufficient.
• Clauses A4: if B is sufficient at level hp then B is sufficient at level h < hp.
• Clauses A5: if a student is in class h-1 and validates all criteria (i,h) in B, then B is not sufficient.
• Clauses A6: if a student is in class h and doesn’t validate any criteria (i,h) in B, then complementary

of B is sufficient.

4.1.2 MaxSAT formulation

When the SAT formulation isn’t satisfiable with the learning set, the aim is to maximize the number
of important clauses to satisfy; to do that, clauses must be weighted and another variable must be
included:
’ z ’ variables, indexed by an alternative x, represent the set of alternatives properly classified by the
inferred model, with the following semantic: zx = 1 ⇔ α−1(x) = NCSω(x) i.e. the alternative x is
properly classified.

These variables are introduced in some clauses to serve as switches: - For any exigence level
k ∈ [2.p], let B ⊆ N a coalition of criteria, and x an alternative assigned to Ck−1 by α. If zk = 1 and
B ⊆

{
i ∈ N : x ∈ Ak

i

}
then tB,k = 0. This leads to the following conjunction of clauses:

ϕC̃S
α =

∧
B⊆N ,k∈[2.p]

∧
x∈α−1(Ck−1)

(∨
i∈B

¬ai,k,X ∨ ¬tB,k ∨ ¬zX

)

- For any exigence level k ∈ [2.p], let B ⊆ N a coalition of criteria, and x an alternative assigned to Ck

by α. If zk = 1 and B ⊆
{
i ∈ N : x ∈ Ak

i

}
then tN\B,k = 0. This leads to the following conjunction

of clauses:

ϕC̃6
α =

∧
B⊆N ,k∈[2.p]

∧
x∈α−1(Ck)

(∨
i∈B

ai,k,x ∨ tN\B,k ∨ ¬zx

)
The objective in the MaxSAT formulation is to maximize the portion of alternatives properly classified,
this is the subject of the following soft clause:

ϕgoal
α =

∧
x∈X∗

zx

Clauses composing the conjunctions ϕC1
α , ϕC2

α , ϕC3
α , ϕC4

α , ϕC5
α and ϕC̃6

α are hard, associated to the weight
wmax, and we associate to ϕgoal

α the weight w1 such that wmax > |X⋆|w1.

4.2 Dataset generation and Noise strategy
Learning data is a set of assignments; each row represents an alternative with its evaluations on each
criterion and the category or class where it has to be assigned. Each row of alternative’s evaluations is
generated using a profile chosen randomly, with adding a random noise to each value that corresponds
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to a criterion in the selected profile. Then,each set of evaluations generated (for one alternative) is
assigned to a class/category depending on the arguments we have considered to generate data, and
particularly the sufficient coalitions. We have also allowed some error when adding assignments in
order to test the ability of the program to generalize.

We tried to ensure a balance between the classes in the learning set, i.e. no large difference in the
number of assignments in each category, in order to have the best model.

alternative criterion 0 criterion 1 criterion 2 criterion 3 class
0 8.02 14.22 9.84 9.03 0
1 8.96 10.78 11.07 9.03 0
2 12.61 10.76 15.98 10.54 2
3 10.13 10.77 9.93 8.92 1

Figure 5: set of data generated randomly and assigned depending on the arguments chosen including
sufficient coalitions

4.3 Results
The output of the NCS resolution is a set of sufficient coalitions for each category. e.g.
Learnt sufficient coalitions:
(0, 1) at levels [1, 2]
(1, 2) at levels [1, 2]
(0, 1, 2) at levels [1, 2]

4.3.1 restoration ability

As expected, all SAT instances (without noise) are able to fully restore the learning sets; this result
is an experimental validation of the theoretical work. Moreover, when learning a model from noisy
learning sets (MaxSAT extension), we were able to infer NCS models with a restoration rate over 1 x,
where x denotes the noise level in the learning set.

4.3.2 generalization ability

• an increase of the size of the learning set induces an improvement of the generalization index; such
improvement occurs whatever the noise level (up to 20always possible to “capture the ground truth”
with a sufficiently large learning set.
• an increase in the reference set noise level requires a larger learning set to keep the same generalization
level. This implies that the “quality” of the learning set, have a significant impact on the required size
of this learning set.

4.4 Single-peaked criterion
To solve the problem for single-peaked, we only had to change the clauses which ensured the monotony
of the marks, which are the ϕC1

α clauses. So we replace them with this one

ϕC1
α_SP =

∧
i∈N ,k∈[2.p]

∧
x′
ix”ix∈X∗ (ai,k,X” ∨ ¬ai,k,X ∨ ¬ai,k,X′)
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5 Conclusion
Our experimental results show that the duration of computation evolve exponentially with respect to
the number of criteria for MR-Sort, linearly for Max-Sat, and linearly with respect to the size of the
learning set. And the generalization index increases with the size of the learning set and decreases
with the addition of number of criteria, all while restoring at least 1− x of the data with x the noise
percentage.

Finally, several computing scripts using Gophersat and Gurobi were proposed in our Github [1].
With the exact steps to reproduce the results presented in this paper.
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